معاونت آموزشی - مرکز مطالعات و توسعه آموزش پزشکی دانشگاه علوم پزشکی کرمان

نيمسال 1-1402 فرم طرح درس

مدرس: دکتر سیاوش جوکار	محل برگزاری: دانشکده	مقطع تحصیلی دانشجویان: دکتری	رشته تحصیلی: پزشکی	نام درس:فیزیولوژی سیستم تنفس
	پزشک <i>ی</i>			میزان واحد: ۱واحد

هدف کلی درس: ...دانشجو با فیزیولوژی تنفس آشنا

منابع اصلی درس: ... فیزیولوژی گایتون

منابع كمكى: فيزيولوژى تنفس وست، فيزيولوژى تنفس

نحوه**ارزشیابی ودرصد آن	تكاليف دانشجو	زمان جلسه (دقیقه)	مواد و وسایل آموزشی	روش یاددهی* یادگیری	طبقه هر حيطه	اهداف ویژه (بر اساس سه حیطه اهداف آموزشی: شناختی، عاطفی، روان حرکتی)	اهداف میانی (رئوس مطالب)	تاريخ جلسه	شماره جلسه
ارزشیابی شفاهی - کتبی طرح سوال پاسخ سوال برای جلسه بعدی - ۱۰% کار کلاسی ۲۰۸ کویزو وپایان ترم	مطالعه درس و آمادگی جهت کویز و پرسش و جستجو برای پاسخ به سوال خواسته شده برای جلسه بعد	۱۲۰ دقیقه	پروژکتور اسلاید-تخته	سخنرانی تعاملی-بحث گروهی	شناختی	RECHANICS OF PULMONARY — 1 VENTILATION MUSCLES THAT CAUSE LUNG — 7 EXPANSION AND CONTRACTION PRESSURES THAT CAUSE — 7 THE MOVEMENT OF AIR IN AND OUT OF THE LUNGS Pleural Pressure and Its Changes — 7 during Respiration. Transpulmonary Pressure—The — 4 Difference between Alveolar and Pleural Pressures. Compliance of the Lungs— 7 Surfactant, Surface Tension, and - 7 Collapse of the Alveoli EFFECT OF THE THORACIC - ^	Pulmonary Ventilation		1

^{*} روش یاددهی – یادگیری می تواند شامل: سخنرانی، مباحثهای – گروهی کوچک، نمایشی – حل مسئله – پرسش و پاسخ – گردش علمی، آزمایشی

^{**} آزمونها بر اساس اهداف می توانند به صورت آزمون ورودی (آگاهی از سطح آمادگی دانشجویان) مرحلهای یا تکوینی (در فرایند تدریس با هدف شناسایی قوت و ضعف دانشجویان) و آزمون پایانی یا تراکمی (پایان یک دوره یا مقطع آموزشی با هدف قضاوت در مورد تسلط دانشجویان) برگزار گردد.

ارزشیابی شفاهی -کتبی طرح سوال ودرخواست برای جلسه بعدی- ۱۰٪ کار کلاسی ۲۰۸ کویزو وپایان ترم	مطالعه درس و آمادگی جهت کویز و پرسش و جستجو برای پاسخ به سوال خواسته شده برای جلسه بعد	۱۲۰ دقیقه	پروژکتور اسلاید-تخته	سخنرانی تعاملی-بحث گروهی	شناختی	CAGE ON LUNG EXPANSIBILITY "Work" of Breathing-٩ climate of the color of the pulmonary volumes and of the capacities of the capacities of the capacity, residual volume, and total lung capacity— HELIUM DILUTION METHOD MINUTE RESPIRATORY— VOLUME EQUALS RESPIRATORY ATE TIMES TIDAL VOLUME "DEAD SPACE" AND ITS— EFFECT ON ALVEOLAR VENTILATION and their calculation PHYSIOLOGICAL ANATOMY OF— THE PULMONARY CIRCULATORY SYSTEM PRESSURES IN THE— PULMONARY SYSTEM BLOOD VOLUME OF THE LUNGS- PULMONARY SYSTEM BLOOD VOLUME OF THE LUNGS- PULMONARY SYSTEM BLOOD VOLUME OF THE LUNGS- VENTILATION OF THE LUNGS- PULMONARY SYSTEM BLOOD VOLUME OF THE LUNGS-	Pulmonary Ventilation & Pulmonary Circulation	*
ارزشیابی شفاهی -کتبی طرح سوال ودرخواست پاسخ سوال برای جلسه بعدی - ۱۰٪ کار کلاسی ۲۰۰ کویزو	مطالعه درس و آمادگی جهت کویز و پرسش و جستجو برای پاسخ به سوال خواسته شده برای جلسه بعد	۱۲۰ دقیقه	پروژکتور اسلاید-تخته	سخنرانی تعاملی-بحث گروهی	شناختی	1-BLOOD FLOW THROUGH THE LUNGS AND ITS DISTRIBUTION 2-EFFECT OF HYDROSTATIC PRESSURE GRADIENTS IN THE LUNGS ON REGIONAL PULMONARY BLOOD FLOW 3-INCREASED CARDIAC OUTPUT DURING HEAVY EXERCISE IS NORMALLY ACCOMMODATED BY THE PULMONARY CIRCULATION WITHOUT LARGE INCREASES IN	Pulmonary Circulation, Pulmonary Edema, Pleural Fluid	٣

وپایان ترم			PULMONARY ARTERY		
1 2 0 92			PRESSURE		
			4-FUNCTION OF THE		
			PULMONARY CIRCULATION		
			WHEN THE LEFT ATRIAL		
			PRESSURE RISES AS A RESULT		
			OF LEFT-SIDED HEART FAILURE		
			5-PULMONARY CAPILLARY		
			DYNAMICS		
			6-FLUID IN THE PLEURAL CAVITY		

نحوه**ارزشیابی ودرصد آن	تكاليف دانشجو	زمان جلسه (دقیقه)	مواد و وسایل آموزشی	روش یاددهی* یادگیری	طبقه هر حيطه	اهداف ویژه (بر اساس سه حیطه اهداف آموزشی : شناختی، عاطفی، روان حرکتی)	اهداف میانی (رئوس مطالب)	تاریخ جلسه	شماره جلسه
ارزشیابی شفاهی -کتبی طرح سوال پاسخ سوال برای جلسه بعدی - ۱۰٪ کار کلاسی ۱۰٪ کویزو کار کلاسی ۸۰٪ میان ترم وپایان ترم	مطالعه درس و آمادگی جهت کویز و پرسش و جستجو برای پاسخ به سوال سوال خواسته شده برای جلسه	۱۲۰ دقیقه	پروژکتور اسلاید-تخته	یادیری تعاملی- بحث بحث گروهی	شناختی	1- Physics of Gas Diffusion and Gas Partial Pressures Molecular Basis of Gas Diffusion 2- Gas Pressures in a Mixture of Gases—"Partial Pressures" of Individual Gases 3- PRESSURE DIFFERENCE CAUSES NET DIFFUSION OF GASES THROUGH FLUIDS 4- COMPOSITIONS OF ALVEOLAR AIR AND ATMOSPHERIC AIR ARE DIFFERENT	Principles of Gas Exchange; Diffusion of Oxygen and Carbon Dioxide Through the Respiratory Membrane		*
						5- OXYGEN CONCENTRATION AND			

^{*} روش یاددهی – یادگیری می تواند شامل: سخنرانی، مباحثه ای – گروهی کوچک، نمایشی – حل مسئله – پرسش و پاسخ – گردش علمی، اَزمایشی

^{**} آزمونها بر اساس اهداف میتوانند به صورت آزمون ورودی (آگاهی از سطح آمادگی دانشجویان) مرحلهای یا تکوینی (در فرایند تدریس با هدف شناسایی قوت و ضعف دانشجویان) و آزمون پایانی یا تراکمی (پایان یک دوره یا مقطع آموزشی با هدف قضاوت در مورد تسلط دانشجویان) برگزار گردد.

						PARTIAL PRESSURE IN THE ALVEOLI 6- DIFFUSION OF GASES THROUGH THE RESPIRATORY MEMBRANE 7- FACTORS THAT AFFECT THE RATE OF GAS DIFFUSION THROUGH THE RESPIRATORY MEMBRANE 8- DIFFUSING CAPACITY OF THE RESPIRATORY MEMBRANE 9- Effect of the Ventilation-Perfusion Ratio on Alveolar Gas Concentration 10- Abnormalities of Ventilation-Perfusion Ratio		
ارزشیابی شفاهی -کتبی طرح سوال ودرخواست باسخ سوال برای جلسه بعدی - ۱۰٪ کار کلاسی ۲۰۸ میان ترم وپایان ترم	مطالعه درس و آمادگی جهت کویز و پرسش و جستجو برای پاسخ به سوال خواسته شده بعد	12 0 دقیقه	پروژکتور اسلاید-تخته	سخنرانی تعاملی- بحث گروهی	شناختی	1. TRANSPORT OF OXYGEN FROM THE LUNGS TO THE BODY TISSUES 2. DIFFUSION OF OXYGEN FROM THE ALVEOLI TO THE PULMONARY CAPILLARY BLOOD 3. TRANSPORT OF OXYGEN IN THE ARTERIAL BLOOD 4. DIFFUSION OF OXYGEN FROM THE	Transport of Oxygen in Blood and Tissue Fluids	۵

PERIPHERAL
CAPILLARIES INTO
THE TISSUE FLUID
THE TISSUE FLUID
5.DIFFUSION OF
OXYGEN FROM THE
PERIPHERAL
CAPILLARIES TO THE
TISSUE CELLS
5.DIFFUSION OF
CARBON DIOXIDE
FROM PERIPHERAL
TISSUE CELLS INTO
THE CAPILLARIES AND
FROM THE
PULMONARY
CAPILLARIES INTO
ALVEOLI
ALVEOLI
6.ROLE OF
HEMOGLOBIN IN
OXYGEN TRANSPORT
OATGEN TRANSFORT
7.REVERSIBLE
COMBINATION OF O ₂
WITH HEMOGLOBIN
8.Oxygen-Hemoglobin
Dissociation Curve.
9.FACTORS THAT SHIFT
THE OXYGEN-
HEMOGLOBIN
DISSOCIATION
CURVE—THEIR
IMPORTANCE FOR
OXYGEN TRANSPORT
OATGEN TRANSPORT
10.INCREASED
DELIVERY OF OXYGEN
TO THE TISSUES WHEN
CARBON DIOXIDE AND
HYDROGEN IONS SHIFT
THE OXYGEN-
11.HEMOGLOBIN
11.11EMOGLODIN

						DISSOCIATION CURVE—THE BOHR EFFECT 12.EFFECT OF BPG TO CAUSE RIGHTWARD SHIFT OF THE OXYGEN-HEMOGLOBIN DISSOCIATION CURVE 13.RIGHTWARD SHIFT OF THE OXYGEN- HEMOGLOBIN DISSOCIATION CURVE DURING EXERCISE 14.METABOLIC USE OF OXYGEN BY THE CELLS		
ارزشیابی شفاهی -کتبی طرح سوال ودرخواست باسخ سوال برای جلسه بعدی - ۱۰٪ کار کلاسی ۱۰۰ کویزو گار کلاسی ۸۰۸ میان ترم وپایان ترم	مطالعه درس و آمادگی جهت کویز و پرسش و جستجو برای پاسخ به سوال سوال خواسته شده برای جلسه بعد	۱۲۰ دقیقه	پروژکتور اسلاید-تخته	سخنرانی تعاملی- بحث بحث گروهی	شناختی	1. CHEMICAL FORMS IN WHICH CARBON DIOXIDE IS TRANSPORTED 2. Transport of Carbon Dioxide in the Form of Bicarbonate Ion 3. CARBON DIOXIDE DISSOCIATION CURVE 4. WHEN OXYGEN BINDS WITH HEMOGLOBIN, CARBON DIOXIDE IS RELEASED (THE HALDANE EFFECT) TO INCREASE CARBON DIOXIDE TRANSPORT	Transport of Carbon Dioxide in Blood, Regulation of Respiration	۶

 <u> </u>	
	5. RESPIRATORY EXCHANGE RATIO
	6. RESPIRATORY CENTER
	7. DORSAL RESPIRATORY GROUP OF NEURONS—ITS CONTROL OF INSPIRATION AND RESPIRATORY RHYTHM
	8. A PNEUMOTAXIC CENTER LIMITS THE DURATION OF INSPIRATION AND INCREASES THE RESPIRATORY RATE
	9. VENTRAL RESPIRATORY GROUP OF NEURONS— FUNCTIONS IN BOTH INSPIRATION AND EXPIRATION
	10. CONTROL OF OVERALL RESPIRATORY CENTER ACTIVITY
	11. CHEMICAL CONTROL OF RESPIRATION
	12. DIRECT CHEMICAL CONTROL OF RESPIRATORY CENTER ACTIVITY

						BY CO ₂ AND HYDROGEN IONS 13. PERIPHERAL CHEMORECEPTOR SYSTEM FOR CONTROL OF RESPIRATORY ACTIVITY—ROLE OF OXYGEN IN RESPIRATORY CONTROL		
ارزشیابی شفاهی - کتبی طرح سوال ودرخواست برای جلسه بعدی - ۱۰٪ کار کلاسی ۱۰۰ کویزو کار کلاسی ۸۰۸ میان ترم وپایان ترم	مطالعه درس و آمادگی جهت کویز و پرسش و جستجو برای پاسخ به سوال سوال نواسته شده برای جلسه بعد	۱۲۰ دقیقه	پروژکتور اسلاید-تخته	سخنرانی تعاملی- بحث گروهی	شناختی	RESPIRATION DURING - I	a. Regulation Respiration	7